
PHYSICAL REVIEW E 67, 016203 ~2003!
Application of computational mechanics to the analysis of natural data:
An example in geomagnetism

Richard W. Clarke, Mervyn P. Freeman,* and Nicholas W. Watkins
British Antarctic Survey, Madingley Road, Cambridge CB3 OET, United Kingdom

~Received 9 October 2001; published 8 January 2003!

We discuss how the ideal formalism of computational mechanics can be adapted to apply to a noninfinite
series of corrupted and correlated data, that is typical of most observed natural time series. Specifically, a
simple filter that removes the corruption that creates rare unphysical causal states is demonstrated, and the
concept of effective soficity is introduced. We believe that computational mechanics cannot be applied to a
noisy and finite data series without invoking an argument based upon effective soficity. A related distinction
between noise and unresolved structure is also defined: Noise can only be eliminated by increasing the length
of the time series, whereas the resolution of previously unresolved structure only requires the finite memory of
the analysis to be increased. The benefits of these concepts are demonstrated in a simulated times series by~a!
the effective elimination of white noise corruption from a periodic signal using the expletive filter and~b! the
appearance of an effectively sofic region in the statistical complexity of a biased Poisson switch time series that
is insensitive to changes in the word length~memory! used in the analysis. The new algorithm is then applied
to an analysis of a real geomagnetic time series measured at Halley, Antarctica. Two principal components in
the structure are detected that are interpreted as the diurnal variation due to the rotation of the Earth-based
station under an electrical current pattern that is fixed with respect to the Sun-Earth axis and the random
occurrence of a signature likely to be that of the magnetic substorm. In conclusion, some useful terminology
for the discussion of model construction in general is introduced.
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I. INTRODUCTION

Computational mechanics~CM! @1# has a formalism@2#
that has been proved to construct the minimal model cap
of statistically reproducing all the resolvable causal struct
of any infinite sequence of discrete measurements~be they
scalar, vector, tensor, or descriptive! @3#. The size of a mode
so defined, measured by a quantity termed statistical c
plexity Cm @2# is a reliable and falsifiable indication of th
amount of structure the data contain@4,5#. The model so
defined, when using the formalism of Ref.@2#, is known as
an ‘‘epsilon machine’’~see also Sec. II!.

The particular strengths of this approach are that it
ables the complexities and structures of different sets of d
to be quantifiably compared and that it directly discov
detailed causal structure within those data. Most importan
examining data in this way accurately identifies the scale
which structure exists within the series. This information c
then be used to optimize the efficiency of physically pla
sible models@6#.

As with all other analytical tools, CM has some limita
tions in the face of certain real-world problems that affect
information content of the signal under study. These pr
lems may include the following:

~i! gaps in the data,
~ii ! noise,
~iii ! restricted sequence length,
~iv! correlations at a very wide range of scales.
The problem of correlations at a wide range of scales
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particularly interesting and relevant to geophysical and ot
natural time series because of their typically power law~col-
ored noise! Fourier spectra@7#. Theoretically, the minimum
resolvable scale will be constrained by the data samp
interval and the maximum resolvable scale by the length
the data series. In practice, the range of resolvable scales
also be set by the available computational resources. T
the range of resolvable scales may be less than those n
sary to evaluate correlations on all relevant scales. Con
quently, it is important to understand how structural analy
is affected by unresolved structure due to correlation.
model is sought which is sofic: A system for which all le
infinite sequences are followed by a finite number of se
infinite right sequences~see p. 80 of Ref.@1#!. A left infinite
sequence is an arbitrarily long sequence of symbols an
followed by its arbitrarily long right-hand counterpart, re
ferred in the literature@1# as the ~right! semi-infinite se-
quence. These definitions are convenient for the analysi
mathematical constructions, but not for the practical analy
of real data.

In this paper, we address these issues in detail. In Sec
we discuss how the ideal formalism of CM can be adapted
apply to a noninfinite series of corrupted and correlated d
In particular, three concepts are defined and discussed:~i! A
tolerance parameter@2# to account for the statistical unce
tainty introduced by a noninfinite series that destroys
exact equivalence of different causal states sharing the s
outcome.~ii ! A new expletive filter that removes signal co
ruption by assuming that corruption creates rare causal s
or words that are not in the dictionary of the true signal.~iii !
The concept of effective soficity in which a data series ha
finite set of equivalent causal states that is stable to sm
changes in the effective memory of those states.
©2003 The American Physical Society03-1
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The latter concept distinguishes between intrinsically
resolvable structure, ‘‘noise,’’ and as yet unresolved ‘‘h
den’’ structure whose discovery is only prevented by the
fective memory being used and by the length of the d
series.

In Sec. III, we apply the CM algorithm with these add
tional concepts to the analysis of structure in four simula
time series with wide applicability:~i! Uncorrelated, white
noise. The epsilon machine for this structure is known@8#.
~ii ! Periodic signal with white noise corruption. This is
very widely used paradigm in applications as diverse as
tronomy, biology, mechanical engineering, telecommuni
tions, etc.~iii ! A biased Poisson switch~i.e., a sequence o
pulses whose pulse durations and interpulse intervals are
termined by stationary Poisson processes!. This is a ~Mar-
kovian! case of the alternating renewal process~ARP! @9#.
More general ARPs are models for the 1/f D ~red noise! spec-
tra so prevalent in nature@9,10#. ~iv! A sequence of bursts
similar to ~iii ! but with fixed pulse duration. The structure
the time series is analyzed by searching for regions of ef
tive soficity in maps of statistical complexity over the para
eter space of the CM model.

The simulated time series also represent four types of
nal thought to be present in time series measurements o
geomagnetic field. In Sec. IV, we use the CM algorithm
examine a real geomagnetic time series measured at Ha
Antarctica, in which deflections of the earth’s magnetic fie
are due mainly to electrical currents in the ionosphere. T
CM analysis yields a structural model that comprises a d
nal component corresponding to the oscillation of the m
suring apparatus with the rotation of the Earth and a Poiss
switched, fixed-duration, pulse component that is like
associated with the magnetospheric substorm@11#.

In Sec. V, we discuss some general principles that h
been learned in applying CM to the analysis of structure
real data, and draw conclusions in Sec. VI.

II. METHOD

Here we give an introduction to the practical use of CM
the analysis of real data. We concentrate only on describ
in detail the formalism for the parsing structure that we ha
used in the analyses. For a fuller description of the poten
intricacies of the method see Ref.@3#. Defining some termi-
nology, we highlight the difficulties associated with analy
ing experimental data in this way, and explain solutions
these problems.

To start with, one has a set of measurements—eithe
spatial or temporal series where the separation between
point is known. The total time or length for which data ex
is their spanS. After coarse graining at a fixed scales, the
series hasN5S/s equally spaced measurements. Next,
digitize the signal amplitude. For reasons that will be app
ent later, the number of possible digits should be low unl
the series length is extremely large. The digitized sequenc
then a concatenation ofN letters lN5$ l 0 ,l 1 , . . . ,l i ,l N21%,
where there areL types of such letters, ranging from 0,1,2
etc., up toL21. In order to maximize the prior probabl
information content of the processed sequence, digitiza
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should normally be performed such that there are equal n
bers of each letter present. For example, in the case of b
rization ~whereL52), this would mean that the thresho
for letter 1 would be the median value of the data. It sho
be noted, though, that the best way to digitize the sequenc
that whichactuallymaximizes the information content of th
result; but that cannot usually be guessed. Another appro
that has been suggested@6# is to use the formalism of maxi
mum entropy.

The next step is to parse the sequence. One begin
composing words from each group ofn consecutive letters
the i th word,W i , is defined by

W i5 l i
n5$ l i ,l i 11 , . . . ,l i 1n21%. ~1!

Thus there areLn possible words, each represented by
unique scalar,Wi :

Wi5 (
j 50

n21

L (n21)2 j3 l i 1 j . ~2!

The total number of words generated from the sample isN
2(n21). We now introduce some terminology; any wo
W i may be called aproword, WP when followed by any
word W i 11. This latter is called theepiword WE . For this
sentence we digress slightly to note that it may sometime
beneficial to perform the initial digitization on each separ
block of data 2n letters long rather than the entire datase

We now proceed to capture causal structure in the w
sequence by compiling a tally of epiwords following ea
proword. This means going through the sequence increm
ing an arrayT(WP ,WE) accordingly. Representing summatio
over an index by its omission, we see that the total tally
T5N2(2n21). Thus, contracting over epiwords gives
tally of prowords only:

T(WP)5 (
WE50

Ln21

T(WP ,WE) ~3!

and the fractional prevalence of each proword in the
quence is therefore contained in the vector

P(WP)5
T(WP)

T
. ~4!

Finally, the fractionalprofile of each proword by epiword is
given by the array

P(WEuWP)5
T(WP ,WE)

T(WP)
, ~5!

where the repeated indices in the division are not summ
over. Given a particular proword, this tells us the likelihoo
of transitions to the various epiwords.

The crux of the technique now lies in identifying pro
words with equivalent epiword profiles. Such prowords a
said to belong to the same ‘‘equivalence class’’ or ‘‘cau
state’’—i.e., they share statistically equivalent probabilis
3-2
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APPLICATION OF COMPUTATIONAL MECHANICS TO . . . PHYSICAL REVIEW E67, 016203 ~2003!
futures~at the level of analysis one has been pursuing!. The
identification is made via an equivalence relation, denoted
;. For an infinite sequence,; can demand exact correspo
dence between profiles, in which case it is always transi
~meaning A;B,B;C⇒A;C). In a practical situation,
where even the finite length of the sequence introduces fl
tuations in the calculated profiles@12#, it is not possible to be
so exact. We therefore introduce a tolerance paramett
within the bounds of which the profiles of words in the sam
equivalence class are allowed to vary: Two prowords,A and
B, are in the same equivalence class if,;WE ;

uP(WEuWP5A)2P(WEuWP5B)u<t, ~6!

where the large vertical bars signify absolute magnitude.
though this destroys the formal transitive property of;,
because nowA;B,B;C no longer impliesA;C, a practi-
cal way to reenforce it is to group equivalence classes
share at least one word.

Having identified the words lying within each equivalen
class, a model which outputs a series of letters statistic
equivalent to the original can be constructed. It is a particu
strength of the technique that the model generated is alw
a minimal representation of the data’s statistical structure
the amount of memory the analysis employs@5#. By ‘‘statis-
tically’’ equivalent, we mean that the model reproduces
same profiles and statistical complexity~see below! as the
original data, rather than just reproducing those statist
measures which discard phase information, e.g., autospe
autocorrelation functions@13#. The model is easiest to de
scribe in terms of its representation as a labeled ‘‘diagrap
Two very simple labeled diagraphs, with extracts from th
outputs, are presented in Fig. 1. A more complicated labe
diagraph, also representing a minimal model, is shown

FIG. 1. Two labeled diagraphs representing minimal mod
with statistical complexities of zero.
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Fig. 2. Each diagraph comprises a node or nodes, indic
by a circle with a number in it, and lines joining one node
another or to itself. Each numbered node of a diagraph r
resents a causal state corresponding to each of the mo
equivalence classes, while each line~unidirectionally! join-
ing two nodes is labeled with the string of letters~the word!
that is output when that line is followed. In addition, ea
line is associated with a probability. The word output
going from one causal state to another is in the equivale
class of the future state. The probability of each word’s o
put may therefore be trivially given byP(WEuWP) . It should
be held in mind that only a subset of all possible labe
diagraphs represent minimal models. Even so, an arbit
diagraph’s output can naturally be used to construct the
propriate minimal model.

Models like this are useful for three reasons.
~i! Their minimality allows the structure of two sets o

data to be directly compared.
~ii ! Once a model has been synchronized with current d

it optimizes one’s ability to forecast the behavior of the sy
tem in the future.

~iii ! The information concerning scales of causal struct
in the data can be used to optimize the performance of m
physically plausible models.

If a recursive decomposition is employed@4,5,14–18#,
diagraphs labeled with outputs that are words can be
formed into equivalent diagraphs labeled with single lette
If such a decomposition is performed on a topological ba
rather than the statistical one described here, then the re
ant diagraph is referred to as an ‘‘epsilon machine’’@4#. This
is perhaps a mathematically aesthetic thing to do. Howe
because any real analysis is performed with an effec
memory of onlyn symbols, only the lastn symbols are of
any use for prediction, making it necessary to synchroniz
single-letter diagraph to an input stream of data. This fac
not manifest in the single-letter diagraph obtained throu
the decomposition of the transition matrixP(WEuWP) . In this
paper we concentrate only upon the identification of prow
equivalence classes, because it is a powerful tool for pat
discovery in its own right.

A measure of the structure of such models is given by
information entropy of the equivalence classes. The inform
tion that is retained about the conditional probabilities
states following a given state differentiates this approa

s

FIG. 2. A more complicated minimal model than that shown
Fig. 1.
3-3
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CLARKE, FREEMAN, AND WATKINS PHYSICAL REVIEW E67, 016203 ~2003!
from more traditional information entropies, such as the K
mogorov entropy@1#. When the equivalence classes are d
fined statistically, as in this paper, this measure is called
tistical complexityCf and is given by@17#

Cf[2(
i

P~Ci !log2P~Ci !, ~7!

where logarithms are canonically taken to base 2 and
prevalenceP(Ci) of equivalence classi is given by the sum
of the prevalences of the words in that class. When equ
lence classes are defined topologically, the entropy mea
is instead denoted byCm @2#; it is still called statistical com-
plexity but it might be better termed topological complexi
For example, the models represented by the labeled
graphs in Fig. 1 both have a statistical complexityCf50
because they only have one causal state~and therefore one
equivalence class! each. This is sensible because they b
output noise. The model represented in Fig. 2, though,
four causal states with equal prevalences and a corresp
ingly higher statistical complexity of two bits:

Cf52(
i 51

4

P~Ci !log2P~Ci !5243
1

4
3

lnS 1

4D
ln~2!

52. ~8!

Cf is extremely important, not only because it reflects
complexity of the system, but also because it does not c
verge until the data have been fully characterized. It is a h
fact that if the sequence lengthN is too small, full character-
ization will not be possible. This is because fluctuations
the proword profiles will corrupt the identification of equiv
lence classes. In this text the resultant unresolvable struc
is callednoise. In contrast, resolvable but as yet unresolv
structure is described ashidden ~see the discussion in Re
@19#!. Such hidden structure is likely to be encountered
analyzing data sets with correlation lengths comparable t
exceeding the maximum word length. Making this distin
tion is very important, even though it is not possible to d
cern whether unresolved structure is noisy or hidden u
further computation has resolved it. In other words, the d
appear to be noisy until the series is found to beeffectively
sofic, at which pointCf attains its correct value and th
model is complete. Sofic sequences are those which
have a finite number of equivalence classes whenN is infi-
nite andn is semi-infinite~see Badii and Politi@1#, p. 80 for
a longer explanation!. Effectivesoficity is here defined to
mean that a sequence has equivalence classes that are
to an increase in word length. Thus, a sequence could
effectively sofic at one range of word lengths but not at
other where either more or less structure is in the proces
being identified.

Both hidden structure and noise will redistribute the ori
nal tally from what would be expected if only resolved stru
ture was present, raisingCf from the value corresponding t
resolved structure alone and increasing the complexity o
model. A simple one-parameter model for the corruption p
cess is to assume that the probability that any letter is
rupted to any other letter isx. Then the probability any lette
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stays as it iss512x and the corruption will have bee
governed by the redistribution function

T(W
P
C ,W

E
C)

corrupt
5 (

WP50

Ln21

(
WE50

Ln21

P~$WP5WP
C ,$WE5WE

C!

3T(WP ,WE)
pure , ~9!

where $A5BC reads,the pure wordA, when corrupted by
noise in a certain way, is identical to the corrupt wordBC.
The label ‘‘pure’’ implies effective soficity. Thus, assumin
the corruption of prowords and epiwords are independent
have

P~$WP5WP
C ,$WE5WE

C!5P~$WP5WP
C!P~$WE5WE

C!,

~10!

where

P~$W5WC!5)
i 51

n

$sd~wi5wi
c!1xd~wiÞwi

c!%,

~11!

whered is a Kronecker delta and the corruption of letters
assumed to be independent.

It happens that arbitrarily corrupted distributions can
uniquely deconvolved as long as one knowsx, but this is not
usually the case in an experimental situation. We have
alternative options. The first is to scan throughx, deconvolv-
ing the proword prevalences each time. This will produc
drastic decrease in the statistical complexity at some po
signifying correct parametrization ofx. A good guess forx
might be the first value which results in a single prowo
having a prevalence of zero.

Whilst the assumption of independent corruption of lett
is likely to be a good model of noise, it is unlikely to be
good model of the uncharacterized correlated structure
we call hidden. Consequently, a second option is to ign
the details of any corruption and simply assume that
prevalence of any expletive~corrupted word! is below a cer-
tain expletive prevalencex. We scan throughx, eradicating
any prowords whose prevalence is less thanx, and recalcu-
late Cf each time. We choose as valid ranges forx those
within which Cf is constant, and therefore locally stable
variation of this parameter. This procedure can alternativ
be performed after the identification of preliminary equiv
lence classes, to eradicate expletive equivalence classe
any case, the approach can only work when the ac
structure-to-noise ratio~SNR! is high enough to ensure tha
expletives are eradicated before meaningful words are. If
pure proword prevalence distribution is very uneven t
method cannot work. In general, a combined method wo
probably be most successful—that is, where one first
tempts the deconvolution and then removes the resul
low-prevalence words completely. It is always possible
determine all the resolvable structure of a sequence
which the SNR is arbitrarily small, soCf is independent of
3-4
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APPLICATION OF COMPUTATIONAL MECHANICS TO . . . PHYSICAL REVIEW E67, 016203 ~2003!
SNR. Of course though, if the SNR is zero, so isCf , be-
cause the model suddenly collapses to a single equival
class.

Note that deconvolution can always be achieved by inv
sion of an assumed convolution matrix, but that this is
always easy. In particular, if one knew the actual matrix th
the ‘‘noise’’ would not be noise at all, but resolved structu
The only deconvolution that is strictly necessary is th
which removes the noise~unresolvable structure! from the
signal. It should therefore assume that the redistribution
Gaussian. In practice though, some hidden~resolvable! struc-
ture may be so computationally difficult to identify that
messy deconvolution is required to remove it, allowing t
analysis of more easily resolvable structure to proceed.
admissible to remove expletives from the prevalence dis
bution because they destroy the effective soficity of the d

It is instructive at this point to go through the uncerta
ties present in the profile and prevalence distributions. W
the sequence length is large compared toLn the probability
that any individual word has been corrupted is approxima
D5nx. Following the definition of the prevalence distribu
tion, we find that the uncertainty in the prevalence of a p
word DP(WP) is governed by an inequality:

D

AT
,DP(WP),D, ~12!

where the lower limit corresponds to uncorrelated errors
the upper limit to systematic errors. We indeed expect
uncertainty to be somewhere in this range because the e
are due to unresolved structure. The uncertainty in the pre
lence of a single epiword within a particular proword’s pr
file is expected to be greater:

D

AT(WP)

,DP(WEuWP),D. ~13!

These inequalities go some way to justifying the use of
blanket tolerancet to identify the equivalence classes, b
cause we know nothing about the nature of the errors
some cases it is conceivable thatt would have to be scaled
by 1/T(WP)

m, where 0,m, 1
2 in order to correctly identify

equivalence relations between profiles. In such casesm is an
extra parameter.

III. EXAMPLES

We now turn to the analysis of test sets of data by
algorithm described in detail above. The test data repre
signal types thought to be present in time series meas
ments of the geomagnetic field that we shall study in
following section.

A. White noise

A white noise~temporally uncorrelated! signal was gen-
erated by a sequence of 5000 independent samples fro
uniform distribution and converted to binary by setting tho
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values above the median to unity and those below the
dian to zero. Figure 3 shows the variation of statistical co
plexity Cf versus word lengthn and tolerancet for this
signal. The absence of a plateau in this graph indicates
for the range of memories~word lengths! tested, the analysis
does not discern any structure at all in the signal. The lin
variation of Cf with n for t'0 represents models with a
much arbitrariness as possible at each level of memory u
in the analysis. These models collapse to a single equ
lence class as the tolerance parameter is increased. A
creasing amount of tolerance is required for this collapse
increasing word length, as expected from Eq.~13!. Thus, no
complex models at all were constructed for this noisy
quence at any time during this analysis. This was expec
we would have been disappointed with the random num
generator that was used to construct the sequence~the IDL
‘‘randomu’’ function, see, also, Ref.@20#! if we had easily
found correlations.

B. Periodic signal with white noise corruption

Figure 4 shows the result of the analysis on a binary
riod four sequence~i.e., 00110011•••) of length 5000,
where 10% of the bits have been randomly flipped. T
graph has a stable, but rather jagged, plateau atCf'2.8
which begins at word length 4 for tolerances in the ran
0.1<t<0.24. This plateau corresponds to a group of mod
that capture the essential structure in the signal. In the
sence of noise the statistical complexity of a binary per
four signal should beCf52. The apparently anomalousl
high level of the plateau is caused by both the noise and

FIG. 3. Statistical complexity of a noisy binary sequence, 50
symbols long over a range of model construction parameters.
3-5
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CLARKE, FREEMAN, AND WATKINS PHYSICAL REVIEW E67, 016203 ~2003!
finite sequence length corrupting the identification of t
equivalence classes. It is not entirely flat because the cor
tion is different at each value of word length and toleran
In fact, there is a gentle downward trend which would co
verge to Cf52 in the limit of the extra, spurious, state
decreasing in prevalence at longer and longer word leng
if the sequence was long enough. Note that the gradien
the increase of statistical complexity with word leng
changes at a memory equal to half the period of the struc
in this signal. This is the point at which the structure is fi
discovered: It is important to note that the convergence
Cf is not immediate, suggesting an analog of the Nyqu
sampling theorem for CM. Note also steep drops inCf
where previously distinguishable equivalence classes h
suddenly collapsed together as the tolerance parametert ex-
ceeds some critical value.

Figure 5 shows results of a similar analysis on the sa
sequence, excepting that this time, words of prevalence
thanx ~the expletive prevalence parameter! were eradicated
from the probability distributions.x was chosen to be 0.07
for this graph. As we can see, this approach was enti
successful in the respect thatCf converges to a plateau for
broad range of the tolerance parametert. A minimal model
that was capable of outputting sequences with statist
structure identical to that characterized from the input w
effectively constructed at every point on this plateau. T
value of Cf for periodic sequences was always found
directly reflect the amount of memory required by the syst
to produce such data: A sequence with a sole periodQ has a
statistical complexity of log2(Q) bits ~in this case the period
four signal has a statistical complexity of 2.0 bits). Mor

FIG. 4. Statistical complexity of a binary period 4 sequen
5000 symbols long, 10% flipped at random, over a range of mo
construction parameters.
01620
p-
.
-

s,
of

re
t
f
t

ve

e
ss

ly

al
s
e

over, we can appreciate that the analysis only yields a c
vergent value after the word length has exceeded at least
the period of the sequence. More generally; convergence
gins when an analysis first has greater memory than a
tem. If the system has certain structure with greater mem
than it may be feasible to analyze, for example, a red no
signal that consists of many Fourier modes with a power
distribution of amplitudes and random phases,Cf will not
ever truly converge. However, there may be stages where
analysis has enough memory to identifysomestructure, and
this is indicated by approximately flat regions, or, at the ve
least, dips in the gradient ofCf with increasing word length.

C. Biased Poisson switch

We next turned to more detailed analyses of two ot
illustratively important diagraph’s outputs. The first we co

,
el

FIG. 5. Analysis of the same sequence as in Fig. 3, with
assumed expletive prevalence ofx50.075.

FIG. 6. The minimal model of biased Poisson switches.
3-6
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APPLICATION OF COMPUTATIONAL MECHANICS TO . . . PHYSICAL REVIEW E67, 016203 ~2003!
sidered was the biased Poisson switch@21#, represented as
labeled diagraph in Fig. 6. The circled states, 0 and 1 m
each generate either a one or a zero with the probabil
shown.

In the figure,ā512a and b̄512b. Note that whena
5b the output sequence is no longer biased. It turns out
the values ofCf we can derive for different values ofa and
b provide some nice insights into the nature of informati
and the optimization of measurement processes. The mea
has two distinct regimes: wherea1b51, and where they
do not. Since the diagraph only has two states, it is clear
as far as prediction of the next epiword is concerned, o
the last bit of any proword can ever matter. Therefore,
words usually separate into two equivalence classes~corre-
sponding to odd and even words!. If, however, a1b51
thena512b5b̄ andb5ā. This always results in the two
equivalence classes collapsing into one, giving a statist
complexity of zero, corresponding to pure noise. This is
propriate because in this degenerate situation the pos
outcomes of node 0 in Fig. 6 are identical to those of nod
and the diagraph collapses to a single state too~see inset!,
and can only produce noise anyway. If the diagraph does
collapse in this way there will always be two equivalen
classes. Their prevalences are found to be 1/(a/b11) and
1/(b/a11). Thus, whena1bÞ1, we have

Cf52(
i

Pi log2~Pi !5
1

Fab 11G log2S a

b
11D

1
1

Fba 11G log2S b

a
11D ~14!

and if a1b51, Cf is always zero. A graph of this functio
is shown in Fig. 7. Note that it always evaluates to un
whena5b, except whena5b5 1

2 . If a does not equalb
~and a1bÞ1) then it is less than unity. In fact, as th
switch becomes more and more biased the statistical c
plexity goes down and down, reaching zero when only o
digit is ever output. This is to be expected because a bia
data set~e.g., more ones than zeros! is a symptom of an
inefficient measurement apparatus: If one symbol is m
prevalent than any other then the system is underchara
ized by the alphabet in use. In the parlance of Shanno
theory of communication this statistical complexity
equivalent to the maximum rate of information.

Given that the collapse discussed above takes a slice
of the graph in Fig. 7, we would expect sequences gener
by certain Poisson switches to be more difficult to charac
ize. For example, sequences produced by a switch wita
5b50.49 have a statistical complexity of unity, but it
difficult to distinguish them from noise~whereCf50) be-
cause they are so close to the collapse ata5b5 1

2 . Such a
sequence, one million symbols long, was analyzed up t
word length of n57 at 100 equal intervals betweent
50.00 andt50.01, without assuming any noise was pres
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~i.e., x50 andx50). The results are presented in Fig.
The plateau corresponding to the optimal model is that wh
has a statistical complexity of unity. We can see that it
difficult to construct this model because the plateau is ra

FIG. 7. Two views of the variation of statistical complexity o
the biased Poisson switch versus up-switching biasa and down-
switching biasb.
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cally constricted at higher word lengths. On one side of it
is too small to identify the equivalence classes, so ev
proword occupies its own equivalence class andCf5n, its
maximum value at any word lengthn. On the other side,t is
too large, so the two equivalence classes collapse toge
producing degenerate models that would output noise.
Cf51 plateau has a distinct end atn55 because the se
quence is not long enough to support analysis at a w
length ofn56. At the latter word length statistical fluctua
tions in every proword profile mean that the correct class
cation of equivalence classes is no longer possible at
range oft. We are not too concerned about this here beca
we have already identified the optimal model which w
stable fromn51 to n55. In fact, a ‘‘more optimal’’ model
would be able to predict the flipping of the switch itself
some extent. The construction of such a model would pr
ably need a lot of computation and would probably requireN
to be very large. These things depend on how random
switch is and on the signal-to-noise ratio.

If a set of data is very complicated, no stable model mi
be identified before the word length becomes too large to
statistically supportable by the sequence length. The o
solution is to gather more data. The alternative is to se
with models that are either inadequate or arbitrarily com
cated. Although the latter models reproduce structure w
~and are therefore most useful to engineers!, studying them
can reveal little about underlying processes. They are sc
tifically unaesthetic. In contrast, one can tell a lot about
intricacies of a system from the minimal adequate mo
associated with it at a certain level of analysis. This is
concern of scientists.

FIG. 8. Statistical complexity of a one million binary symb
sequence produced by a Poisson switch witha5b50.49, over a
range of model construction parameters.
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D. Fixed pulse duration Poisson switch

The next class of labeled diagraphs we consider prod
binary sequences that are simple models of a process
bursts. These sequences have the structure of susta
switches—that is, when the switch is down it has a const
probability of switching up, and when up, it stays up for
fixed count U. When the sequence is unbiased the u
switching probability is 1/(U11). See Fig. 9 for an exampl
of this kind of labeled diagraph. The exact statistical co
plexities of such unbiased sustained switches are given

Cf52F S U11

2U D log2S U11

2U D1~U21!S 1

2U D log2S 1

2U D G
5

1

ln~2! F ln~2U !2S U11

2U D ln~U11!G . ~15!

We now investigate the practical analysis of a seque
one million binary symbols long that was produced by
sustained switch withU54. The statistical complexities o
the models constructed by the analysis are shown in Fig.
It can be seen that the first convergent values are at w
lengths one greater thanU. That is to say, good models ca
be constructed when the analysis first has a greater mem
than the system. The plateau identifiable with a model of
form shown in Fig. 9 begins at a word length of 4 and e
tends laterally fromt'0.02 to t'0.06. The remarkable
thing about this plateau is that, although it is very flat, it
not entirely flat. It begins atCf

5 '1.770 69 which is signifi-
cantly higher than the theoretical statistical complexity

Cf51/ln(2)@ln(8)(5
8)ln(5)#'1.548 79 and subsequently osc

lates around this value while it converges to it~e.g., Cf
10

'1.521 60). This behavior is caused by the phase ambig
due to the absence of information concerning the synchr
zation of a burst when a word is composed entirely of ‘‘u
symbols. For example, at word length six, the profile of wo
63, ~i.e., 111111 in binary!, is a superposition of the profile
of sequences like 10@111111#, 01@111111#, and
11@111111#, from each of which it cannot be distinguishe
at that level of analysis. Therefore, in this case, the profile
word 63 does not match that of any other word, and is a
cated its own equivalence class. Although the prevalenc

FIG. 9. The minimal model of an unbiased switch which su
tains for 4 symbols.
3-8
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APPLICATION OF COMPUTATIONAL MECHANICS TO . . . PHYSICAL REVIEW E67, 016203 ~2003!
this word, and thence its class, is very low, it is sufficient
distort the statistical complexity.

In an analysis with recourse to infinite memory, the pre
lence of an infinite sequence of ‘‘up’’ symbols is zero. Thu
the U causal states of such a sequence would be corre
identified, and the statistical complexity of the model co
structed would match exactly with the theoretical value.
course, in practice no analysis can have infinite memory
one wishes to retain optimal predictability of future data th
it is necessary to accept whatever model is actually c
structed by an analysis with finite memory.

IV. ANALYZING GEOMAGNETIC DATA

The test data examples analyzed in the preceding sec
represent signal types thought to be present in time se
measurements of the geomagnetic field. If this is true,
may expect to see similar structure emerging from a C
analysis of a real geomagnetic time series.

The CM analysis detailed in Sec. II was performed on 3
averaged measurements of the variation of the East-W
component of the geomagnetic fieldD at Halley, Antarctica,
from three separate years: 24 February–16 December, 1
26 January–28 December, 1998, and 2 January–30 De
ber 2000. A graph of the data from 26 January to 28 Dece
ber 1998 is shown in Fig. 11. It can be seen that the magn
deflections have both a linear trend and a high freque
signal with an annual amplitude modulation that maximiz
in the austral summer. The linear trend is caused by
movement of the ice shelf upon which Halley is situated a
was removed by subtracting the result of a linear regres
for each of the three years. The detrended time series

FIG. 10. Statistical complexity of a one million binary symb
sequence produced by an unbiased switch which sustains for
symbols, over a range of model construction parameters.
01620
-
,
tly
-
f
If
n
-

on
es
e

h
st

95,
m-
-

tic
y

s
e
d
n
as

then binarized with respect to the median, giving three
quences of 2352, 2688, and 2896 symbols, respectiv
These series were then analyzed up to a word length o
and with tolerances varying in 80 equal steps from 0.05
0.25. Words with prevalences less thanx50.004 were eradi-
cated. The graph of statistical complexityCf is shown in
Fig. 12. Two plateaus are evident, one atCf'0.9, covering
a wide range of tolerances and between word lengths o
and 3, and the other plateau atCf'5.0, at the highest corne
ur

FIG. 11. EastwardD component of the magnetic deflection
Halley during 1998.

FIG. 12. Statistical complexity of a binary symbol sequen
from about three years’ worth of 180-min time-averaged reading
the positive eastward component of the magnetic deflection at
ley, over a range of model construction parameters. The plateau
word length of eight indicates major correlation at a period of 24
All the plateaus in this diagram were stable to variation of t
assumed expletive prevalence, here set at 0.4%.
3-9
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CLARKE, FREEMAN, AND WATKINS PHYSICAL REVIEW E67, 016203 ~2003!
of the graph, between tolerances of about 0.05 and 0.07
at word lengths of 8 or more. The convergence to this sec
plateau is slow, so it is not as obvious as the lower plate
However, this does not mean that it is any less significa
The only criterion that these features need to satisfy is
the statistical complexity does not vary in their vicinity
parameter space. This is to ensure that each parameter
definite and well-defined value for the particular regime
structure that has been identified.

The convergence of statistical complexity at a wo
length of 8 corresponds to a time scale of 833524 hours.
Such a diurnal variation is well known and is primari
caused by the rotation of the observing station with the Ea
under the so-called SQ ionospheric current system tha
driven by pressure gradients caused by solar heating an
thus fixed in the Sun-Earth frame@22#. The variation can be
seen in the raw data, as illustrated by plotting a typi
month of Halley geomagnetic data in Fig. 13. The associa
ground magnetic variation has neither a pure sinuso
shape nor a fixed period of exactly 24 h, and this is likely
contribute towards the higher observed statistical comple
of Cf'5.0 compared to theCf53 that would be expected
for a pure binary period 8 signal.

Of course, it is possible to detect a simple 24 h periodic
using Fourier techniques: Fig. 14 shows the Fourier po
spectrum of the eastwardD component of the magnetic de
flection over Halley for the year 1998. The power spectr
shown is the average of 59 power spectra calculated f
8192 min-long intervals of 1-min averaged data. Each in
val was linearly detrended and a Hanning window appl
before calculating the power spectrum. The average po
spectrum shows a clear peak at 0.012 mHz~24 h!, and a
second harmonic, but there are no other obvious peaks b
1 h21 ~0.28 mHz!. In contrast, the CM analysis detecte
structure at 3–9 h time periods, as evidenced by the plate
at word lengths of 1–3 in Fig. 12. The reason why su
structure is not seen as a peak in the Fourier power spec
must be because the signal is not periodic, only recurr
Instead, such recurrent structure could explain why there
break in the gradient of the Fourier power spectrum a
frequency of'0.06 mHz ~a period of about 5 h!. For ex-
ample, it is possible to generate a Lorentzian-like pow

FIG. 13. EastwardD component of the magnetic deflection
Halley during February 1998.
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spectrum from a random sequence of pulses@23#, but the
measured spectral slope above 0.06 mHz in Fig. 14 is
exactly f 22. Alternatively, the break could be a low-pas
filter effect. Such ambiguity illustrates how Fourier metho
are excellent tools for the analysis of signals contain
many distinct periodicities, but are harder to interpret for t
more general class of stochastic signals.

Instead, Computational Mechanics provides a more
propriate formalism for the analysis of these signals. T
plateau in Fig. 12 at word lengths of 1–3 indicates the pr
ence of significant structure at 3–9 h time scales. This p
teau has a statistical complexity of'0.9 and an overall
structure similar to that of Fig. 8, suggesting the possibi
of some random pulselike process. Such a possibility is
triguing because pulselike geomagnetic perturbations
hour time scales~known as magnetic bays! are particularly
prominent during the night time at high~auroral zone! lati-
tudes and are associated with magnetospheric substorms@24#

FIG. 14. Fourier spectrum of the EastwardD component of the
magnetic deflection at Halley for 1998. Two spectral slopes off 0

below 0.06 mHz andf 24/3 above 0.06 mHz are shown for refe
ence. Vertical dashed guidelines are also shown at key frequen
referred to in the manuscript.

FIG. 15. EastwardD component of the magnetic deflection
Halley during 16 June 1998.
3-10
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APPLICATION OF COMPUTATIONAL MECHANICS TO . . . PHYSICAL REVIEW E67, 016203 ~2003!
whose occurrence has been argued to be a stationary Po
process with mean recurrence time of 5 h@11#. Figure 15
shows a single day of Halley geomagnetic data that ill
trates the presence of such pulselike disturbances on
time scales sitting on top of the diurnal variation.

To investigate this further, an analysis was made o
40-min averaged time series of the East-West componen
the geomagnetic field at Halley from 00:00 UT, 25 Janua
1998 to 00:00 UT, 26 December, 1998. After removing t
linear trend in the data due to the movement of the ice sh
the time series was binarized with respect to the med
giving a sequence of 12011 symbols. The series was
lyzed up to a word length of 11 for tolerances in 60 eq
steps between 0.00 and 0.15. Words with prevalences
thanx50.015 were eradicated. The graph obtained forCf is
shown in Fig. 16. The plateaus in this graph are stable
variation ofx. The higher plateaus have models that are m
useful for prediction of future data, if they are stable to
increase in the amount of data available to the analysis.
lower plateaus have models that show the most domin
structures—and are easier to understand and interpret p
cally.

It can be seen from the graph that, at a tolerance betw
t50.12 andt50.15, more structure is identified betwee
word lengths six and eight than it was possible to reso
with a memory of only five symbols. The model which co
responds to this plateau is represented, for a word lengt
seven, in Fig. 17. For clarity, transitions with a probabil
less than 0.055 are not shown, which is why each nod
branching probabilities do not quite sum to unity. Moreov
the output labels are binarized averages, weighted accor

FIG. 16. Statistical complexity of a 12011 binary symbol s
quence from 40-min time-averaged readings of the positive e
ward component of the magnetic deflection at Halley over a ra
of model construction parameters.
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to the probabilities of individual words. Thus, this diagra
represents the least detailed structure discovered in the
series. More complicated diagraphs were constructed tha
more suited to prediction than easy interpretation. It is
coincidence of averaging over all words between nodes
a 0.68 and 0.27 split appears twice as the actual transit
differ in structure. The details of the model are in Table
Comparing with Fig. 6, the transitions between states 0 an
of this diagraph are an approximately Poisson-switched p
cess with a timescale of about 5 h. This value is given by
range of word lengths capable of resolving this struct
from the sequence within this range oft (n56,7, and 8!; at
n57 the characteristic timescale is 7340 minutes'4 h and
40 min.

It was thought that the other states and transitions in F
17 would be caused by the diurnal variation of the d
alone. This was investigated by analyzing, in exactly
same way, a pure binary sequence with a period of
symbols—corresponding to a period of one day if each sy
bol were to represent a 40-min average. The principal tr
sitions of the model constructed for this sequence are sh
in the diagraph drawn in Fig. 18. The structural similariti
and differences between this diagraph and the one in Fig
are obvious, and support the idea that the transitions betw
states 0 and 1 of Fig. 17 are due to substorm activity, ra
than merely being an artifact of a partially characterized 2
period.

V. DISCUSSION

In the preceding sections, we have demonstrated how
can measure the statistical complexity of linear data
quences and construct the minimal model necessary to
scribe the data. The reader may have noticed that there
seven degrees of freedom in making such a model:

~a! digitization method~binary, trinary, etc.!,
~b! coarse-graining scales,
~c! sequence lengthL,

-
t-
e

FIG. 17. Predominant structure of the diagraph constructed f
the Halley data at word length seven (t50.14, x50.015). For
clarity, transitions with a probability less than 0.055 are not show
which is why each node’s branching probabilities do not quite s
to unity.
3-11
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TABLE I. Details of the geomagnetic data model: Details of the simple stable model at word le
seven,t'0.14. x50.015, at which value 114 of 128 words are cut. Statistical complexity51.51477 bits.

Class Equivalent surviving words

0 0 64 96 112 120 124 126
1 1 3 7 15 31 63
2 127

Word number~Class! Word Probability

Transitions from Class 0
0 ~0! 0000000 0.481382
1 ~1! 0000001 0.0759726
3 ~1! 0000011 0.0729505
7 ~1! 0000111 0.0641128

15 ~1! 0001111 0.0540634
31 ~1! 0011111 0.0546018
63 ~1! 0111111 0.0532191
64 ~0! 1000000 0.0338069
96 ~0! 1100000 0.0234980

127 ~2! 1111111 0.0514929
Transitions from Class 1

0 ~0! 0000000 0.0423272
64 ~0! 1000000 0.0291209
96 ~0! 1100000 0.0209377

112 ~0! 1110000 0.0209523
120 ~0! 1111000 0.0293505
124 ~0! 1111100 0.0442261
126 ~0! 1111110 0.0822315
127 ~2! 1111111 0.684994

Transitions from Class 2
0 ~0! 0000000 0.0789801

64 ~0! 1000000 0.0907960
96 ~0! 1100000 0.0945274

112 ~0! 1110000 0.103234
120 ~0! 1111000 0.108831
124 ~0! 1111100 0.105721
126 ~0! 1111110 0.101990
127 ~2! 1111111 0.268035

Class Average word Probability

Average transitions from Class 0
0 @ 0.161, 0.102, 0.061, 0.040, 0.027, 0.009, 0.000# 0.573587
1 @ 0.000, 0.142, 0.288, 0.432, 0.603, 0.797, 1.000# 0.374920
2 @ 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000# 0.051493

Average transitions from Class 1
0 @ 0.843, 0.735, 0.657, 0.579, 0.470, 0.306, 0.000# 0.269146
1 @ 0.000, 0.309, 0.444, 0.590, 0.714, 0.906, 1.000# 0.045860
2 @ 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000# 0.684994

Average transitions from Class 2
0 @ 0.885, 0.752, 0.614, 0.463, 0.304, 0.149, 0.000# 0.684080
1 @ 0.000, 0.117, 0.221, 0.325, 0.532, 0.701, 1.000# 0.047886
2 @ 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000# 0.268035

Class Prevalence

0 0.483737
1 0.269561
2 0.246701
016203-12
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APPLICATION OF COMPUTATIONAL MECHANICS TO . . . PHYSICAL REVIEW E67, 016203 ~2003!
~d! word lengthn,
~e! tolerancet,
~f! corruption frequencyx, and
~g! expletive frequencyx.
These degrees of freedom express the level of informa

in the data and the depth of knowledge with which the mo
is probing the system from which the data are measured.
example, increasing the sequence lengthL, reducing the
coarse-graining scales, or increasing the digitization from
binary to trinary, all provide increased information an
thereby increased knowledge of the system that the data
resent. Conversely, increasing the tolerance or the exple
frequency reduces information by admitting different sta
to be equivalent or to be omitted, respectively, thereby red
ing knowledge of the system. Consequently, we might ant
pate that the best model of the system is the model co
sponding to the region of the multidimensional parame
space in which information is maximized. Whilst such
model is the most accurate description of the data sequ
with the greatest information content, it is not necessarily
optimal model of the system. This is because any data
quence is not a complete representation of the system
measured from. In particular, it is limited in two importa
respects: First, there is structure in a data sequence, tha
have termed noise, that cannot be resolved under any am
of computation. This will create differences in the profiles
words that are statistically insignificant and should be
nored by allowing some nonzero value of tolerance, corr
tion frequency or expletive frequency. Second, there is st
ture in a data sequence, that we have termed hidden, tha
not been resolved at a certain level of memory or wo
length but that is resolvable at a greater word length. In ot
words, meaningful models of the data can only be fou
within certain, usually finite, zones of the parameter sp
@25#. Within each zone,Cf is constant and the model is bo
stable and minimal. Outside this zone, the model is either
degenerate or overly complicated. For example, it will
degenerate~andCf will be too low! if t is set too large. This
is because equivalence classes will collapse into one ano
Similarly, the model will be unnecessarily complicated~and
Cf will be too high! if t is set too small. This is becaus

FIG. 18. The main transitions of the minimal model for a bina
period 36 sequence at a word length of 7,t50.14, x50.015.
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distinctions will be made between words on the basis
insignificant differences in their profiles.

An analogy is the construction of a vocabulary for t
structure of speciation of feline animals. If one is too fus
about the tail, Manx cats cannot be classed as domestic
If one’s sole criterion is purring or a meow, a lion cub ma
be misclassed as a domestic cat. The correct classificatio
feline animals needs a finite amount of information to f
within the boundaries of a finite number of provisos.

In the case of computational mechanics we interpret
fectively sofic models to be optimal. Thus we seek plate
in the multidimensional parameter space. Generally,
space can contain many plateaus, the heights of which
the corresponding models’ statistical complexities. If w
want to forecast the data most accurately, we are looking
the highest plateau, which has the most stringent conditi
@26#. More physically understandable models may exist
some lower plateaus where only the more dominant ca
structures are preserved.

Thus, in the end, the success of the analysis depends
the existence of effectively sofic plateaus of statistical co
plexity in the multidimensional parameter space and
ability to discover them. This is contingent upon the data t
are supplied and how much computing power is available
is important to bear in mind that the data are not only
function of the physical system’s behavior, but also of t
measurement apparatus and any preprocessing. There
four main pitfalls ~represented by corresponding model p
rameters!.

~i! Mischaracterization of the system by the measurem
apparatus ( . . .x,x).

~ii ! Degradation of data prior to the analysis by process
(s).

~iii ! Insufficient data to resolve all structure present (L),
and

~iv! insufficient computing power to resolve hidden stru
ture (n,t).

The apparatus may easily mischaracterize the system
ther by introducing structure to the data which is foreign
the system’s behavior, or by neglecting to transcribe struc
that should be present. This situation is most apparent w
the apparatus is clearly only taking measurements from
cross section of the system. Nevertheless, if it is reason
to assume in a particular case that the apparatus is capab
providing a good representation, then identified structure
be attributed to the system. In such cases we would a
expect the statistical complexity to scale with the system
true complexity. Naturally, this is not valid when the cros
section happens to be an exact subsystem.

Although all processing degrades data, it may still be p
sible to correctly characterize all the structure present. Th
because the degradation will usually produce noise, wh
can be ignored. A graver problem is when~uncharacteriz-
able! noise represents some of the system’s structure.
only solution may be to collect more data, but other prelim
nary approaches are to use a finer scale when coarse gra
and/or to digitize more finely. However, it is always nece
sary to choose sensible margins for the parameter search
cause some regions of the parameter space are computa
3-13
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ally very costly to explore. For example, a trinary sequen
is about seven hundred times as hard to fully analyze
word length of eight than a binary sequence. You must h
a good reason not to use binary.

An alternative approach may be useful when the d
have resolvable structure at two widely separated scale
may be more computationally efficient to construct high
level equivalence classes than to persist with using lon
and longer words. Classes on the next highest level are fo
by applying the same analysis method to the sequence
pressed in terms of a set of primary level causal states
which Cf has not yet converged. All information betwee
the scalesn1s andn2s is lost in this process. Even so, it is
more preferable approach than simply further coarse grain
the data to intervals ofn1s if one has reason to believe th
the system’s degrees of freedom at the two scales
coupled. The total statistical complexity is the sum of tho
calculated at each level, so it is in fact possible to test
such coupling by comparing the coarse-grainedCf with the
hierarchical value.

There is actually no reason why the prowords and e
words should not come from different sequences, enab
the direct causal correlation of two systems, such as the s
wind and the magnetosphere.

VI. CONCLUSION

Computational mechanics is an intuitive and power
way to study complicated nonlinear sequences derived f
physical systems. This is because the analysis ident
causal structure from data presented to it and constructs
minimal adequate model that fits these data. The informa
about this structure, and in particular its scales, can then
used to optimize more physically plausible models. In t
paper, we have discussed in detail how the original form
d
e,
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ism has to be used when applied to noninfinite sequen
The main conclusion is that models constructed by com
tational mechanics are good if, and only if, they are stable
the variation of the parameters used to construct them f
the data. In addition, two quite general definitions are ma
These concern the general constructibility of models from
set of observations:

~i! Structure which cannot be resolved from a set of d
under any amount of computation is most usefully cal
noise.

~ii ! Structure which has not been resolved at a cert
level of computation or memory, but which is resolvab
from the set of data is usefully calledhidden.

The prior undecidability of whether unresolved structu
is noise or hidden is a direct parallelism of Go¨del’s famous
theorem. For a proof relating the two fields, but in a sligh
different context, see G.J. Chaitin@27#.

The method developed in this paper was applied to m
netometer measurements of ionospheric currents for
years 1995, 1998, and 2000. The technique successfully
structed models, the simplest of which comprised a diur
component and a Poisson-switched process with a times
of about 5 h that likely relates to the occurrence of magne
substorms. The most complicated model could be used
forecast space weather.

A similar method was also proposed to characterize
causal relationship of any two systems, such as the s
wind and the magnetosphere.
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