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Application of computational mechanics to the analysis of natural data:
An example in geomagnetism
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We discuss how the ideal formalism of computational mechanics can be adapted to apply to a noninfinite
series of corrupted and correlated data, that is typical of most observed natural time series. Specifically, a
simple filter that removes the corruption that creates rare unphysical causal states is demonstrated, and the
concept of effective soficity is introduced. We believe that computational mechanics cannot be applied to a
noisy and finite data series without invoking an argument based upon effective soficity. A related distinction
between noise and unresolved structure is also defined: Noise can only be eliminated by increasing the length
of the time series, whereas the resolution of previously unresolved structure only requires the finite memory of
the analysis to be increased. The benefits of these concepts are demonstrated in a simulated timegaeries by
the effective elimination of white noise corruption from a periodic signal using the expletive filtefbatite
appearance of an effectively sofic region in the statistical complexity of a biased Poisson switch time series that
is insensitive to changes in the word lengthemory used in the analysis. The new algorithm is then applied
to an analysis of a real geomagnetic time series measured at Halley, Antarctica. Two principal components in
the structure are detected that are interpreted as the diurnal variation due to the rotation of the Earth-based
station under an electrical current pattern that is fixed with respect to the Sun-Earth axis and the random
occurrence of a signature likely to be that of the magnetic substorm. In conclusion, some useful terminology
for the discussion of model construction in general is introduced.
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[. INTRODUCTION particularly interesting and relevant to geophysical and other
natural time series because of their typically power (awl-
Computational mechanid<M) [1] has a formalisnf2]  ored noisg¢ Fourier spectra7]. Theoretically, the minimum

that has been proved to construct the minimal model capabkgsolvable scale will be constrained by the data sampling
of statistically reproducing all the resolvable causal structurénterval and the maximum resolvable scale by the length of
of any infinite sequence of discrete measureménésthey the data series. In practice, the range of resolvable scales will
scalar, vector, tensor, or descriptiig]. The size of a model @IS0 be set by the available computational resources. Thus,
so defined, measured by a quantity termed statistical confl® range of resolvable scales may be less than those neces-

plexity C,, [2] is a reliable and falsifiable indication of the sary to Qv_aIL_Jate correlations on all relevant scales. Cons_e-
amount of structure the data contdi,5]. The model so quently, it is important to understand how structural analysis

defined, when using the formalism of RE2], is known as is affected by unresolved structure due to correlation. A
an “eps7ilon machine’(see also Sec. ’ model is sought which is sofic: A system for which all left

The particular strengths of this approach are that it enlnflnlte sequences are followed by a finite number of semi-

" . infinite right sequencetee p. 80 of Ref 1]). A left infinite
ables the complexities and structures of different sets of dat, quence is an arbitrarily long sequence of symbols and is

to be quantifiably compared and that it directly discoversey) o veq by its arbitrarily long right-hand counterpart, re-
detailed causal structure within those data. Most importantlysorred in the literaturg[1] as the (right) semi-infinite se-
examining data in this way accurately identifies the scales &j,ence. These definitions are convenient for the analysis of
which structure exists within the series. This information canmathematical constructions, but not for the practical analysis
then be used to optimize the efficiency of physically plau-of real data.
sible modeld6]. _ o In this paper, we address these issues in detail. In Sec. Il
As with all other analytical tools, CM has some limita- we discuss how the ideal formalism of CM can be adapted to
tions in the face of certain real-world problems that affect theapply to a noninfinite series of corrupted and correlated data.
information content of the signal under study. These probin particular, three concepts are defined and discusged:

lems may include the following: tolerance parametd®] to account for the statistical uncer-
(i) gaps in the data, tainty introduced by a noninfinite series that destroys the
(i) noise, exact equivalence of different causal states sharing the same
(iii ) restricted sequence length, outcome.(ii) A new expletive filter that removes signal cor-
(iv) correlations at a very wide range of scales. ruption by assuming that corruption creates rare causal states

The problem of correlations at a wide range of scales isr words that are not in the dictionary of the true siguiil)
The concept of effective soficity in which a data series has a
finite set of equivalent causal states that is stable to small
*Electronic address: mpf@bas.ac.uk changes in the effective memory of those states.
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The latter concept distinguishes between intrinsically unshould normally be performed such that there are equal num-
resolvable structure, “noise,” and as yet unresolved “hid- bers of each letter present. For example, in the case of bina-
den” structure whose discovery is only prevented by the efrization (whereL=2), this would mean that the threshold
fective memory being used and by the length of the datdor letter 1 would be the median value of the data. It should
series. be noted, though, that the best way to digitize the sequence is

In Sec. Ill, we apply the CM algorithm with these addi- that whichactually maximizes the information content of the
tional concepts to the analysis of structure in four simulatedesult; but that cannot usually be guessed. Another approach
time series with wide applicability(i) Uncorrelated, white that has been suggestg] is to use the formalism of maxi-
noise. The epsilon machine for this structure is knd®  mum entropy.

(i) Periodic signal with white noise corruption. This is a The next step is to parse the sequence. One begins by
very widely used paradigm in applications as diverse as assomposing words from each group ofconsecutive letters;
tronomy, biology, mechanical engineering, telecommunicatheith word, W;, is defined by

tions, etc.(iii) A biased Poisson switcfi.e., a sequence of

pulses whose pulse durations and interpulse intervals are de- Wi=1'={li i1, o livnoa) ey
termined by stationary Poisson procegsadis is a(Mar- )

koviar) case of the alternating renewal procés®P) [9]. Th_us there are." possible words, each represented by a
More general ARPs are models for thé2(red nois¢ spec-  Unique scalanyV; :

tra so prevalent in naturf,10]. (iv) A sequence of bursts h-1
similar to (iii) but with fixed pulse duration. The structure of W= LO0-D-ix) @)
the time series is analyzed by searching for regions of effec- = e

tive soficity in maps of statistical complexity over the param-
eter space of the CM model. The total number of words generated from the sampld is
The simulated time series also represent four types of sig—(n—1). We now introduce some terminology; any word
nal thought to be present in time series measurements of th%;, may be called gproword, Wy when followed by any
geomagnetic field. In Sec. IV, we use the CM algorithm toword W, ;. This latter is called thepiword Wg. For this
examine a real geomagnetic time series measured at Hallesentence we digress slightly to note that it may sometimes be
Antarctica, in which deflections of the earth’s magnetic fieldbeneficial to perform the initial digitization on each separate
are due mainly to electrical currents in the ionosphere. Thélock of data 2 letters long rather than the entire dataset.
CM analysis yields a structural model that comprises a diur- We now proceed to capture causal structure in the word
nal component corresponding to the oscillation of the measequence by compiling a tally of epiwords following each
suring apparatus with the rotation of the Earth and a Poissorproword. This means going through the sequence increment-
switched, fixgd-duration, pulse component that is likelying an arrayT (w, w,) accordingly. Representing summation
associated with the magnetospheric substfiti). over an index by its omission, we see that the total tally is

In Sec. V, we discuss some general principles that havg— N—(2n—1). Thus, contracting over epiwords gives a
been learned in applying CM to the analysis of structure ing)y of prowords only:

real data, and draw conclusions in Sec. VI.
Lh-1

Il. METHOD T(WP)ZWEZO T(wy wp) ®

Here we give an introduction to the practical use of CM i.nand the fractional prevalence of each proword in the se-
the analysis of real data. We concentrate only on deSC”bmauence is therefore contained in the vector

in detail the formalism for the parsing structure that we have
used in the analyses. For a fuller description of the potential
intricacies of the method see Ré8]. Defining some termi-
nology, we highlight the difficulties associated with analyz-
mgseexg:aorgreemntsél data in this way, and explain solutions toF_inaIIy, the fractionabprofile of each proword by epiword is
To start with, one has a set of measurements—either 21V€Nn by the array
spatial or temporal series where the separation between each
point is known. The total time or length for which data exist
is their spanS. After coarse graining at a fixed scagthe
series has\=S/s equally spaced measurements. Next, we
digitize the signal amplitude. For reasons that will be apparwhere the repeated indices in the division are not summed
ent later, the number of possible digits should be low unlessver. Given a particular proword, this tells us the likelihoods
the series length is extremely large. The digitized sequence tsf transitions to the various epiwords.
then a concatenation of lettersIN={lo,l,, ... l;,In_1}, The crux of the technique now lies in identifying pro-
where there aré& types of such letters, ranging from 0,1,2, words with equivalent epiword profiles. Such prowords are
etc., up toL—1. In order to maximize the prior probable said to belong to the same “equivalence class” or “causal
information content of the processed sequence, digitizatiostate”—i.e., they share statistically equivalent probabilistic

T
(Wp)
P(Wp) = T (4)

Twp we)

Pwgw,)= —— (5
( El p) T(Wp)
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FIG. 2. A more complicated minimal model than that shown in
Fig. 1.

Fig. 2. Each diagraph comprises a node or nodes, indicated
by a circle with a number in it, and lines joining one node to
another or to itself. Each numbered node of a diagraph rep-
resents a causal state corresponding to each of the model’s
equivalence classes, while each liumidirectionally join-
TYPICAL OUTPUT: ..3.21,42,3.6321.21 42.42,321.63... ing two nodes is labeled with the string of lettétise word
that is output when that line is followed. In addition, each
FIG. 1. Two labeled diagraphs representing minimal modelsine is associated with a probability. The word output on
with statistical complexities of zero. going from one causal state to another is in the equivalence
class of the future state. The probability of each word’s out-
futures(at the level of analysis one has been pursuiipe  put may therefore be trivially given BB w|w,) - It should
identification is made via an equivalence relation, denoted by,o neid in mind that only a subset of all possible labeled
~. For an infinite sequence; can demand exact coIrespon- giagraphs represent minimal models. Even so, an arbitrary

dence between profiles, in which case it is always tranSitiV%iagraph's output can naturally be used to construct the ap-
(meaning A~B,B~C=A~C). In a practical situation, propriate minimal model.

where even the finite length of the sequence introduces fluc- \104els like this are useful for three reasons.

tuations in the calculated profil§$2], it is not possible to be (i) Their minimality allows the structure of two sets of
so exact. We therefore introduce a tolerance parameter yaia to be directly compared.

with_in the bounds of which the profiles of words in the same (i) Once a model has been synchronized with current data
equivalence class are allowed to vary: Two prowoRlsnd it optimizes one’s ability to forecast the behavior of the sys-

B, are in the same equivalence classvifjVg; tem in the future.
(iii) The information concerning scales of causal structure
IPewglwp=a) ~ Powglwp =) < 7 (6)  in the data can be used to optimize the performance of more

physically plausible models.

where the large vertical bars signify absolute magnitude. Al- If a recursive decomposition is employ¢d,5,14—-18,
though this destroys the formal transitive property of  diagraphs labeled with outputs that are words can be re-
because nowA~B,B~C no longer impliesA~C, a practi-  formed into equivalent diagraphs labeled with single letters.
cal way to reenforce it is to group equivalence classes thaf such a decomposition is performed on a topological basis
share at least one word. rather than the statistical one described here, then the result-

Having identified the words lying within each equivalence ant diagraph is referred to as an “epsilon machipél’ This
class, a model which outputs a series of letters statisticalljs Perhaps a mathematically aesthetic thing to do. However,
equivalent to the original can be constructed. It is a particulapecause any real analysis is performed with an effective
strength of the technique that the model generated is alwaygemory of onlyn symbols, only the lash symbols are of
a minimal representation of the data’s statistical structure foRny use for prediction, making it necessary to synchronize a
the amount of memory the analysis empl¢§$ By “statis-  Single-letter diagraph to an input stream of data. This fact is
tically” equivalent, we mean that the model reproduces thehot manifest in the single-letter diagraph obtained through
same profiles and statistical complexitsee below as the —the decomposition of the transition matiy_w,, . In this
original data, rather than just reproducing those statisticabaper we concentrate only upon the identification of proword
measures which discard phase information, e.g., autospectrequivalence classes, because it is a powerful tool for pattern
autocorrelation function§13]. The model is easiest to de- discovery in its own right.
scribe in terms of its representation as a labeled “diagraph.” A measure of the structure of such models is given by the
Two very simple labeled diagraphs, with extracts from theirinformation entropy of the equivalence classes. The informa-
outputs, are presented in Fig. 1. A more complicated labeletion that is retained about the conditional probabilities of
diagraph, also representing a minimal model, is shown irstates following a given state differentiates this approach
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from more traditional information entropies, such as the Kol-stays as it issc=1— y and the corruption will have been
mogorov entropyf1]. When the equivalence classes are de-governed by the redistribution function
fined statistically, as in this paper, this measure is called sta-

tistical complexityC , and is given by[17] L"-1 L"-1
Tl wo) = 2 > P($Wp=WS,$We=WE)
Wp=0 We=0
— 2 P(C)log,P(C), )
| XTRIE ey )

where logarithms are canonically taken to base 2 and the
prevalenceP(C;) of equivalence classis given by the sum where $A=B€° reads,the pure wordA, when corrupted by

of the prevalences of the words in that class. When equivanoise in a certain way, is identical to the corrupt woif.
lence classes are defined topologically, the entropy measurkhe label “pure” implies effective soficity. Thus, assuming
is instead denoted b@,, [2]; it is still called statistical com-  the corruption of prowords and epiwords are independent we
plexity but it might be better termed topological complexity. have

For example, the models represented by the labeled dia-

graphs in Fig. 1 both have a statistical complexity =0 P(SWp=WS, $We=WE)=P($Wp=WS)P($We=WS),
because they only have one causal stated therefore one

equivalence clagseach. This is sensible because they both (10
output noise. The model represented in Fig. 2, though, h here
four causal states with equal prevalences and a correspond-
ingly higher statistical complexity of two bits: n
1 P($W=WC)= H {o8(w; =wf) + x S(w; # W)},
iPCI P(Ci)= 4><1><|n_)—2 8 @)
= (C)logoP(Cy)= 4" 1In(2) ~ ®)

whered is a Kronecker delta and the corruption of letters is

C, is extremely important, not only because it reflects theassumed to be independent.
complexity of the system, but also because it does not con- It happens that arbitrarily corrupted distributions can be
verge until the data have been fully characterized. It is a hardniquely deconvolved as long as one knowdut this is not
fact that if the sequence lengthis too small, full character- usually the case in an experimental situation. We have two
ization will not be possible. This is because fluctuations inalternative options. The first is to scan throyghdeconvolv-
the proword profiles will corrupt the identification of equiva- ing the proword prevalences each time. This will produce a
lence classes. In this text the resultant unresolvable structudrastic decrease in the statistical complexity at some point,
is callednoise In contrast, resolvable but as yet unresolvedsignifying correct parametrization gf. A good guess foly
structure is described dsdden (see the discussion in Ref. might be the first value which results in a single proword
[19]). Such hidden structure is likely to be encountered inhaving a prevalence of zero.
analyzing data sets with correlation lengths comparable to or Whilst the assumption of independent corruption of letters
exceeding the maximum word length. Making this distinc-is likely to be a good model of noise, it is unlikely to be a
tion is very important, even though it is not possible to dis-good model of the uncharacterized correlated structure that
cern whether unresolved structure is noisy or hidden untilve call hidden. Consequently, a second option is to ignore
further computation has resolved it. In other words, the datahe details of any corruption and simply assume that the
appear to be noisy until the series is found todfiectively  prevalence of any expletiveorrupted wordis below a cer-
sofic at which pointC, attains its correct value and the tain expletive prevalence. We scan througlx, eradicating
model is complete. Sofic sequences are those which stiiny prowords whose prevalence is less tikaand recalcu-
have a finite number of equivalence classes weB infi-  late C, each time. We choose as valid ranges Xfathose
nite andn is semi-infinite(see Badii and Polifi1], p. 80 for  within which C is constant, and therefore locally stable to
a longer explanation Effective soficity is here defined to variation of this parameter. This procedure can alternatively
mean that a sequence has equivalence classes that are stdi@eperformed after the identification of preliminary equiva-
to an increase in word length. Thus, a sequence could blence classes, to eradicate expletive equivalence classes. In
effectively sofic at one range of word lengths but not at an-any case, the approach can only work when the actual
other where either more or less structure is in the process aftructure-to-noise ratiéSNR) is high enough to ensure that
being identified. expletives are eradicated before meaningful words are. If the

Both hidden structure and noise will redistribute the origi-pure proword prevalence distribution is very uneven this
nal tally from what would be expected if only resolved struc- method cannot work. In general, a combined method would
ture was present, raising, from the value corresponding to probably be most successful—that is, where one first at-
resolved structure alone and increasing the complexity of ittempts the deconvolution and then removes the resulting
model. A simple one-parameter model for the corruption prodow-prevalence words completely. It is always possible to
cess is to assume that the probability that any letter is cordetermine all the resolvable structure of a sequence for
rupted to any other letter ig. Then the probability any letter which the SNR is arbitrarily small, sG, is independent of
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SNR. Of course though, if the SNR is zero, sodg, be-
cause the model suddenly collapses to a single equivalence
class.

Note that deconvolution can always be achieved by inver-
sion of an assumed convolution matrix, but that this is not
always easy. In particular, if one knew the actual matrix then
the “noise” would not be noise at all, but resolved structure.
The only deconvolution that is strictly necessary is that
which removes the nois@nresolvable structuyefrom the
signal. It should therefore assume that the redistribution is
Gaussian. In practice though, some hiddesolvable struc-
ture may be so computationally difficult to identify that a
messy deconvolution is required to remove it, allowing the
analysis of more easily resolvable structure to proceed. It is
admissible to remove expletives from the prevalence distri-
bution because they destroy the effective soficity of the data.

It is instructive at this point to go through the uncertain-
ties present in the profile and prevalence distributions. When
the sequence length is large compared.tahe probability
that any individual word has been corrupted is approximately
A=ny. Following the definition of the prevalence distribu-
tion, we find that the uncertainty in the prevalence of a pro-
word AP(WP) is governed by an inequality:

Ayxe|dwop [eoisies

A
E<AP(WP)<A' (12 FIG. 3. Statistical complexity of a noisy binary sequence, 5000
symbols long over a range of model construction parameters.

where the lower limit corresponds to uncorrelated errors and
the upper limit to systematic errors. We indeed expect theyalues above the median to unity and those below the me-
uncertainty to be somewhere in this range because the errofiéan to zero. Figure 3 shows the variation of statistical com-
are due to unresolved structure. The uncertainty in the prevalexity C, versus word lengtin and tolerancer for this
lence of a single epiword within a particular proword’s pro- signal. The absence of a plateau in this graph indicates that,
file is expected to be greater: for the range of memoriesvord lengths tested, the analysis
does not discern any structure at all in the signal. The linear
variation of C, with n for 7~0 represents models with as
—<AP(WE‘WP)<A. (13 much arbitrariness as possible at each level of memory used
V1 (Wp) in the analysis. These models collapse to a single equiva-
lence class as the tolerance parameter is increased. An in-
These inequalities go some way to justifying the use of thereasing amount of tolerance is required for this collapse for
blanket tolerancer to identify the equivalence classes, be-increasing word length, as expected from Etp). Thus, no
cause we know nothing about the nature of the errors. Iomplex models at all were constructed for this noisy se-
some cases it is conceivable thatvould have to be scaled quence at any time during this analysis. This was expected;
by 1/T(w,)™, where 6<m<3 in order to correctly identify we would have been disappointed with the random number
equivalence relations between profiles. In such casissan  generator that was used to construct the sequéheelDL
extra parameter. “randomu” function, see, also, Ref20)) if we had easily
found correlations.

IIl. EXAMPLES
) B. Periodic signal with white noise corruption
We now turn to the analysis of test sets of data by the

algorithm described in detail above. The test data represent 19ure 4 shows the result of the analysis on a binary pe-
signal types thought to be present in time series measurdiod four sequencei.e., 00110011--) of length 5000,

ments of the geomagnetic field that we shall study in theVhere 10% of the bits have been randomly flipped. This
following section. graph has a stable, but rather jagged, plateaC gt2.8

which begins at word length 4 for tolerances in the range
0.1=7=<0.24. This plateau corresponds to a group of models
that capture the essential structure in the signal. In the ab-
A white noise(temporally uncorrelatgdsignal was gen- sence of noise the statistical complexity of a binary period
erated by a sequence of 5000 independent samples fromfaur signal should beC,=2. The apparently anomalously
uniform distribution and converted to binary by setting thosehigh level of the plateau is caused by both the noise and the

A. White noise
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o ] ) ) FIG. 5. Analysis of the same sequence as in Fig. 3, with an
FIG. 4. Statistical complexity of a binary period 4 sequence,assumed expletive prevalencesof 0.075.
5000 symbols long, 10% flipped at random, over a range of model
construction parameters. over, we can appreciate that the analysis only yields a con-

finite sequence length corrupting the identification of thevergent value after the word length has exceeded at least half

equivalence classes. It is not entirely flat because the corrufil® per;}od of the S(IEC]l:IeI'f].CE. rl\\/lore generally; converr]gence be-
tion is different at each value of word length and tolerance3'"S When an analysis first has greater memory than a sys-
In fact, there is a gentle downward trend which would con-tem. If the system has certain structure with greater memory

verge t0C,=2 in the limit of the extra, spurious, states than it may be feasible to analyze, for example, a red noise

decreasing in prevalence at longer and longer word length$!9na! that consists of many Fourier modes with a power law

if the sequence was long enough. Note that the gradient dfistribution of amplitudes and random phas€s, will not
the increase of statistical complexity with word length €V€r truly converge. However, there may be stages where the

changes at a memory equal to half the period of the structur@nalysis has enough memory to identfymestructure, and
in this signal. This is the point at which the structure is firstNiS IS indicated by approximately flat regions, or, at the very
discovered: It is important to note that the convergence of€aSt dips in the gradient &, with increasing word length.

C, is not immediate, suggesting an analog of the Nyquist
sampling theorem for CM. Note also steep dropsdp
where previously distinguishable equivalence classes have we next turned to more detailed analyses of two other
suddenly collapsed together as the tolerance parameer jllustratively important diagraph’s outputs. The first we con-
ceeds some critical value.

Figure 5 shows results of a similar analysis on the same
sequence, excepting that this time, words of prevalence less
thanx (the expletive prevalence parameterere eradicated
from the probability distributionsx was chosen to be 0.075
for this graph. As we can see, this approach was entirely
successful in the respect tha, converges to a plateau for a
broad range of the tolerance parameteA minimal model
that was capable of outputting sequences with statistical
structure identical to that characterized from the input was
effectively constructed at every point on this plateau. The
value of C, for periodic sequences was always found to
directly reflect the amount of memory required by the system
to produce such data: A sequence with a sole peQidtas a
statistical complexity of logQ) bits (in this case the period
four signal has a statistical complexity of 2.0 bits). More- FIG. 6. The minimal model of biased Poisson switches.

C. Biased Poisson switch

o=1-0, B=1-f

N.B. When a+f=1 the diagraph above collapses to a one-
0 Sstate diagraph which produces pure noise (inset).
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sidered was the biased Poisson swit2h], represented as a
labeled diagraph in Fig. 6. The circled states, 0 and 1 may
each generate either a one or a zero with the probabilities
shown.

In the figure,a=1—«a and B=1— B. Note that whemn
= B the output sequence is no longer biased. It turns out that
the values ofC,, we can derive for different values of and
B provide some nice insights into the nature of information
and the optimization of measurement processes. The measure
has two distinct regimes: where+ =1, and where they
do not. Since the diagraph only has two states, it is clear that
as far as prediction of the next epiword is concerned, only
the last bit of any proword can ever matter. Therefore, all
words usually separate into two equivalence clagsese-
sponding to odd and even wopddf, however, a+B=1

thena=1- 3= B and 8= «a. This always results in the two
equivalence classes collapsing into one, giving a statistical
complexity of zero, corresponding to pure noise. This is ap-
propriate because in this degenerate situation the possible
outcomes of node 0 in Fig. 6 are identical to those of node 1
and the diagraph collapses to a single state(s®s® inset

and can only produce noise anyway. If the diagraph does not
collapse in this way there will always be two equivalence
classes. Their prevalences are found to bex/j3+1) and
1/(Bla+1). Thus, wherne+ 8+ 1, we have

7,
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and ifa+B=1, C, is always zero. A graph of this function

is shown in Fig. 7. Note that it always evaluates to unity
when a= 3, except wherv=pB=3. If a does not equaB

(and a+ B#1) then it is less than unity. In fact, as the
switch becomes more and more biased the statistical com-
plexity goes down and down, reaching zero when only one
digit is ever output. This is to be expected because a biased
data set(e.g., more ones than zejos a symptom of an
inefficient measurement apparatus: If one symbol is more
prevalent than any other then the system is undercharacter-
ized by the alphabet in use. In the parlance of Shannon’s
theory of communication this statistical complexity is
equivalent to the maximum rate of information.

Given that the collapse discussed above takes a slice out
of the graph in Fig. 7, we would expect sequences generated
by certain Poisson switches to be more difficult to character-
ize. For example, sequences produced by a switch with
==0.49 have a statistical complexity of unity, but it is
difficult to distinguish them from noiséwhereC ,=0) be-
cause they are so close to the collaps&at3=3;. Such a (i.e., y=0 andx=0). The results are presented in Fig. 8.
sequence, one million symbols long, was analyzed up to &he plateau corresponding to the optimal model is that which
word length of n=7 at 100 equal intervals between has a statistical complexity of unity. We can see that it is
=0.00 andr=0.01, without assuming any noise was presendifficult to construct this model because the plateau is radi-

0
i
XK
//I'I il
"""/;"'3"'5"%"7\\'\“ “
i
i "’%“HJ‘ i

i

Statistical Complexity

FIG. 7. Two views of the variation of statistical complexity of
the biased Poisson switch versus up-switching hiaand down-
switching biasp.
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° The next class of labeled diagraphs we consider produce
g binary sequences that are simple models of a process with
bursts. These sequences have the structure of sustained
switches—that is, when the switch is down it has a constant
probability of switching up, and when up, it stays up for a
fixed countU. When the sequence is unbiased the up-

FIG. 8. Statistical complexity of a one million binary symbol SWitching probability is 1/J+1). See Fig. 9 for an example
sequence produced by a Poisson switch thhﬁ: 049’ over a of thIS k|nd of Iabeled dlagraph. The exact Stat|st|ca.| com-

\
/////////////////

~

range of model construction parameters. plexities of such unbiased sustained switches are given by
. . ] ] C.— Uu+1 | Uu+1 U_1 1 |
cally constricted at higher word lengths. On one side af it = || 20 /"% S5 +(U-1) ou)'9%| 20

is too small to identify the equivalence classes, so every
proword occupies its own equivalence class &y=n, its

maximum value at any word length On the other sides is “In(2)
too large, so the two equivalence classes collapse together,
producing degenerate models that would output noise. The
C,=1 plateau has a distinct end at=5 because the se-

. (15

U+l
In(2U)—(W)In(U+1)

We now investigate the practical analysis of a sequence
uence is not long enough to support analysis at a word <. million binary symbols long that was produced by a
q g 9 PP y Sustained switch with =4. The statistical complexities of

Itieonng;f;notic(;& 'ragv\tlgf dlat:(ffﬁl;v%ga:ﬁntataﬁ tsl":ztlsg)llﬁ’zlc:zllé?at.gzi-fi—the models constructed by the analysis are shown in Fig. 10.
yPp P It can be seen that the first convergent values are at word

cation of equivalence classes is no longer possible at anl%ngths one greater thas. That is to say, good models can

range ofr. We are not too concerned about this here becausge constructed when the analysis first has a greater memory

we have already identified the op“tlmal mocjel \,',Vh'Ch WaSthan the system. The plateau identifiable with a model of the
stable fromn=1 ton=5. In fact, a “more optimal” model

; e T form shown in Fig. 9 begins at a word length of 4 and ex-

;V;J#]Ied ebxetearl]?le.r:% pcrgr?sl,frtug?ozlE?I:L?cﬁf;hn?o?jvglltwogfdelf tobtends laterally fromr~0.02 to 7=~0.06. The remarkable

’ ; pro thing about this plateau is that, although it is very flat, it is
ably need a lot of computation and would probably reqdire i : 5 ST
to be very large. These things depend on how random thréotentlrgly flat. It begins atC¢~_l.77O 59 .Wh'Ch IS S'gmf" )
switch is and on the signal-to-noise ratio. cantly higher than the theoretical statistical complexity of:

If a set of data is very complicated, no stable model mightC»=1/IN(2)In(8)(3)In(5)]~1.548 79 and subsequently oscil-

be identified before the word length becomes too large to béates around this value while it converges to(étg., Cio
statistically supportable by the sequence length. The only=1.521 60). This behavior is caused by the phase ambiguity
solution is to gather more data. The alternative is to settlelue to the absence of information concerning the synchroni-
with models that are either inadequate or arbitrarily compli-zation of a burst when a word is composed entirely of “up”
cated. Although the latter models reproduce structure welsymbols. For example, at word length six, the profile of word
(and are therefore most useful to engingessudying them 63, (i.e., 111111 in binary is a superposition of the profiles
can reveal little about underlying processes. They are scierf sequences like 1011117, 01111111, and
tifically unaesthetic. In contrast, one can tell a lot about thel1 111117, from each of which it cannot be distinguished
intricacies of a system from the minimal adequate modeht that level of analysis. Therefore, in this case, the profile of
associated with it at a certain level of analysis. This is theword 63 does not match that of any other word, and is allo-
concern of scientists. cated its own equivalence class. Although the prevalence of
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FIG. 10. Statistical complexity of a one million binary symbol
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FIG. 11. Eastward component of the magnetic deflection at
Halley during 1998.

then binarized with respect to the median, giving three se-
quences of 2352, 2688, and 2896 symbols, respectively.
These series were then analyzed up to a word length of 10
and with tolerances varying in 80 equal steps from 0.05 to
0.25. Words with prevalences less than0.004 were eradi-
cated. The graph of statistical complexig, is shown in
Fig. 12. Two plateaus are evident, oneCaj~0.9, covering

sequence produced by an unbiased switch which sustains for folt wide range of tolerances and between word lengths of 1

symbols, over a range of model construction parameters.

this word, and thence its class, is very low, it is sufficient to
distort the statistical complexity.

In an analysis with recourse to infinite memory, the preva-
lence of an infinite sequence of “up” symbols is zero. Thus,
the U causal states of such a sequence would be correctly
identified, and the statistical complexity of the model con-
structed would match exactly with the theoretical value. Of
course, in practice no analysis can have infinite memory. If
one wishes to retain optimal predictability of future data then
it is necessary to accept whatever model is actually con-
structed by an analysis with finite memory.

IV. ANALYZING GEOMAGNETIC DATA

The test data examples analyzed in the preceding section
represent signal types thought to be present in time series
measurements of the geomagnetic field. If this is true, we
may expect to see similar structure emerging from a CM
analysis of a real geomagnetic time series.

The CM analysis detailed in Sec. Il was performed on 3-h
averaged measurements of the variation of the East-West
component of the geomagnetic fidildat Halley, Antarctica,
from three separate years: 24 February—16 December, 1995,
26 January—28 December, 1998, and 2 January—30 Decem-
ber 2000. A graph of the data from 26 January to 28 Decem-

Auxe[dwop [eonisies

and 3, and the other plateau@},~5.0, at the highest corner

ber 1998 is shown in Fig. 11. It can be seen that the magnetic g, 12. statistical complexity of a binary symbol sequence
deflections have both a linear trend and a high frequencyom about three years’ worth of 180-min time-averaged readings of
signal with an annual amplitude modulation that maximizeshe positive eastward component of the magnetic deflection at Hal-
in the austral summer. The linear trend is caused by they, over a range of model construction parameters. The plateau at a
movement of the ice shelf upon which Halley is situated andwvord length of eight indicates major correlation at a period of 24 h.
was removed by subtracting the result of a linear regressionll the plateaus in this diagram were stable to variation of the
for each of the three years. The detrended time series wassumed expletive prevalence, here set at 0.4%.
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of the graph, between tolerances of about 0.05 and 0.07 and g, 14. Fourier spectrum of the Eastwaddcomponent of the

at word lengths of 8 or more. The convergence to this seconghagnetic deflection at Halley for 1998. Two spectral slope$Cof
plateau is slow, so it is not as obvious as the lower platealyeiow 0.06 mHz and %2 above 0.06 mHz are shown for refer-

However, this does not mean that it is any less significantence. Vertical dashed guidelines are also shown at key frequencies
The only criterion that these features need to satisfy is thalferred to in the manuscript.
the statistical complexity does not vary in their vicinity in
parameter space. This is to ensure that each parameter hasgectrum from a random sequence of pulg23], but the
definite and well-defined value for the particular regime ofmeasured spectral slope above 0.06 mHz in Fig. 14 is not
structure that has been identified. exactly f ~2. Alternatively, the break could be a low-pass

The convergence of statistical complexity at a wordfilter effect. Such ambiguity illustrates how Fourier methods
length of 8 corresponds to a time scale 0o£8=24 hours. are excellent tools for the analysis of signals containing
Such a diurnal variation is well known and is primarily many distinct periodicities, but are harder to interpret for the
caused by the rotation of the observing station with the Earttmore general class of stochastic signals.
under the so-called SQ ionospheric current system that is Instead, Computational Mechanics provides a more ap-
driven by pressure gradients caused by solar heating and opriate formalism for the analysis of these signals. The
thus fixed in the Sun-Earth franj@2]. The variation can be plateau in Fig. 12 at word lengths of 1-3 indicates the pres-
seen in the raw data, as illustrated by plotting a typicalence of significant structure at 3—9 h time scales. This pla-
month of Halley geomagnetic data in Fig. 13. The associatettau has a statistical complexity e¢0.9 and an overall
ground magnetic variation has neither a pure sinusoidastructure similar to that of Fig. 8, suggesting the possibility
shape nor a fixed period of exactly 24 h, and this is likely toof some random pulselike process. Such a possibility is in-
contribute towards the higher observed statistical complexityriguing because pulselike geomagnetic perturbations on
of C,~5.0 compared to th€ ,=3 that would be expected hour time scalegknown as magnetic baysre particularly
for a pure binary period 8 signal. prominent during the night time at higlauroral zong lati-

Of course, it is possible to detect a simple 24 h periodicitytudes and are associated with magnetospheric subsfgdhs
using Fourier techniques: Fig. 14 shows the Fourier power
spectrum of the eastwaid component of the magnetic de- E ' ' ' '
flection over Halley for the year 1998. The power spectrum  90F
shown is the average of 59 power spectra calculated fromr :
8192 min-long intervals of 1-min averaged data. Each inter- 805
val was linearly detrended and a Hanning window applied
before calculating the power spectrum. The average poweiz' _ E
spectrum shows a clear peak at 0.012 mig4 h), and a ~ 7Of
second harmonic, but there are no other obvious peaks belo™ £
1 h™! (0.28 mH2. In contrast, the CM analysis detected 60 F
structure at 3—9 h time periods, as evidenced by the plateau :
at word lengths of 1-3 in Fig. 12. The reason why such
structure is not seen as a peak in the Fourier power spectrur
must be because the signal is not periodic, only recurrent
Instead, such recurrent structure could explain why there is ¢
break in the gradient of the Fourier power spectrum at a
frequency of~0.06 mHz (a period of about 5 h For ex- FIG. 15. Eastward component of the magnetic deflection at
ample, it is possible to generate a Lorentzian-like powemHalley during 16 June 1998.

50 F

5 10 15 20
Universal Time (h)
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FIG. 17. Predominant structure of the diagraph constructed from
the Halley data at word length sevem=0.14, x=0.015). For
clarity, transitions with a probability less than 0.055 are not shown,
which is why each node’s branching probabilities do not quite sum
to unity.

to the probabilities of individual words. Thus, this diagraph
represents the least detailed structure discovered in the time
series. More complicated diagraphs were constructed that are
more suited to prediction than easy interpretation. It is a
Eoincidence of averaging over all words between nodes that
% 0.68 and 0.27 split appears twice as the actual transitions
differ in structure. The details of the model are in Table I.

whose occurrence has been argued to be a stationary Poiss%tﬂtrr?.pa(;'.ng W'tﬂ Fig. 6, the tran.smotnls b:tyveen sta’_[;esho dand 1
process with mean recurrence time of §1]. Figure 15 of this diagraph are an approximately Foisson-switched pro-

shows a single day of Halley geomagnetic data that ilusSess with a timescale of about 5 h. This value is given by the
nge of word lengths capable of resolving this structure

trates the presence of such pulselike disturbances on ho e )
time scales sitting on top of the diurnal variation. rom the sequence w'|th|.n this range ﬂ(n:.6'7' and § at

To investigate this further, an analysis was made of 6{1=7_the characteristic timescale is<Z40 minutes=4 h and
40-min averaged time series of the East-West component &0 min. . -
the geomagnetic field at Halley from 00:00 UT, 25 January, It was thought that the other states anq transitions in Fig.
1998 to 00:00 UT, 26 December, 1998. After removing thel/ Would be caused by the diurnal variation of the data
linear trend in the data due to the movement of the ice shelf2lON€. This was investigated by analyzing, in exactly the
the time series was binarized with respect to the mediar>@Me Way, & pure binary sequence with a period of 36
giving a sequence of 12011 symbols. The series was an%ymbols—correspondmg to a period of one day if each sym-
lyzed up to a word length of 11 for tolerances in 60 equal _O_l were o represent a 40-min average. The principal tran-
steps between 0.00 and 0.15. Words with prevalences lesdfions °.f the model CO’.‘St“!Cted U sequence are s_h_own
thanx=0.015 were eradicated. The graph obtaineddgris n the_d|agraph drawn in Fig. 1.8' The structural S|m|lar!t|es
shown in Fig. 16. The plateaus in this graph are stable t@nd differences between this diagraph and the one in Fig. 17

variation ofx. The higher plateaus have models that are moré'® obvious, and su_pport the idea that the transitio_ns between
useful for prediction of future data, if they are stable to anStates 0 and 1 of Fig. 17 are due to substorm activity, rather

increase in the amount of data available to the analysis. Th@an merely being an artifact of a partially characterized 24-h

lower plateaus have models that show the most dominarﬂer'Od'
structures—and are easier to understand and interpret physi-
cally. V. DISCUSSION

It can be seen from the graph that, at a tolerance between
7=0.12 andr=0.15, more structure is identified between In the preceding sections, we have demonstrated how CM
word lengths six and eight than it was possible to resolvecan measure the statistical complexity of linear data se-
with a memory of only five symbols. The model which cor- quences and construct the minimal model necessary to de-
responds to this plateau is represented, for a word length afcribe the data. The reader may have noticed that there are
seven, in Fig. 17. For clarity, transitions with a probability seven degrees of freedom in making such a model:
less than 0.055 are not shown, which is why each node’s (a) digitization methodbinary, trinary, etg,
branching probabilities do not quite sum to unity. Moreover, (b) coarse-graining scalg
the output labels are binarized averages, weighted according (c) sequence length,

FIG. 16. Statistical complexity of a 12011 binary symbol se-
quence from 40-min time-averaged readings of the positive eas
ward component of the magnetic deflection at Halley over a rang
of model construction parameters.
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TABLE |. Details of the geomagnetic data model: Details of the simple stable model at word length
seven,7~0.14.x=0.015, at which value 114 of 128 words are cut. Statistical complexity51477 bits.

Class Equivalent surviving words
0 0 64 96 112 120 124 126
1 1 3 7 15 31 63
2 127
Word number(Class Word Probability
Transitions from Class 0
0(0) 0000000 0.481382
1(1) 0000001 0.0759726
3(1) 0000011 0.0729505
7 (1) 0000111 0.0641128
15(1) 0001111 0.0540634
31(1) 0011111 0.0546018
63 (1) 0111111 0.0532191
64 (0) 1000000 0.0338069
96 (0) 1100000 0.0234980
127 (2) 1111111 0.0514929
Transitions from Class 1
0(0) 0000000 0.0423272
64 (0) 1000000 0.0291209
96 (0) 1100000 0.0209377
112 (0) 1110000 0.0209523
120 (0) 1111000 0.0293505
124 (0) 1111100 0.0442261
126 (0) 1111110 0.0822315
127 (2) 1111111 0.684994
Transitions from Class 2
0(0) 0000000 0.0789801
64 (0) 1000000 0.0907960
96 (0) 1100000 0.0945274
112 (0) 1110000 0.103234
120(0) 1111000 0.108831
124 (0) 1111100 0.105721
126 (0) 1111110 0.101990
127 (2) 1111111 0.268035
Class Average word Probability

Average transitions from Class 0

0 [ 0.161, 0.102, 0.061, 0.040, 0.027, 0.009, 0.000 0.573587

1 [ 0.000, 0.142, 0.288, 0.432, 0.603, 0.797, 1.000 0.374920

2 [ 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000 0.051493
Average transitions from Class 1

0 [ 0.843, 0.735, 0.657, 0.579, 0.470, 0.306, 0.000 0.269146

1 [ 0.000, 0.309, 0.444, 0.590, 0.714, 0.906, 1.000 0.045860

2 [ 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000 0.684994
Average transitions from Class 2

0 [ 0.885, 0.752, 0.614, 0.463, 0.304, 0.149, 0.000 0.684080

1 [ 0.000, 0.117, 0.221, 0.325, 0.532, 0.701, 1.000 0.047886

2 [ 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000 0.268035

Class Prevalence

0 0.483737

1 0.269561

2 0.246701
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distinctions will be made between words on the basis of
insignificant differences in their profiles.
An analogy is the construction of a vocabulary for the

TYTIT structure of speciation of feline animals. If one is too fussy
about the tail, Manx cats cannot be classed as domestic cats.
If one’s sole criterion is purring or a meow, a lion cub may
be misclassed as a domestic cat. The correct classification of
feline animals needs a finite amount of information to fall
within the boundaries of a finite number of provisos.

In the case of computational mechanics we interpret ef-
fectively sofic models to be optimal. Thus we seek plateaus
in the multidimensional parameter space. Generally, this
space can contain many plateaus, the heights of which are
the corresponding models’ statistical complexities. If we
want to forecast the data most accurately, we are looking for

FIG. 18. The main transitions of the minimal model for a binary the highest plateau, which has the most stringent conditions

-~

mumn

period 36 sequence at a word length ofr%0.14, x=0.015. [26]. More physically understandable models may exist on
some lower plateaus where only the more dominant causal
(d) word lengthn, structures are preserved.
(e) tolerancer, Thus, in the end, the success of the analysis depends upon
(f) corruption frequency, and the existence of effectively sofic plateaus of statistical com-
(g) expletive frequency. plexity in the multidimensional parameter space and our

These degrees of freedom express the level of informatioability to discover them. This is contingent upon the data that
in the data and the depth of knowledge with which the modehre supplied and how much computing power is available. It
is probing the system from which the data are measured. Fds important to bear in mind that the data are not only a
example, increasing the sequence lengthreducing the function of the physical system’s behavior, but also of the
coarse-graining scals, or increasing the digitization from measurement apparatus and any preprocessing. There are
binary to trinary, all provide increased information and four main pitfalls (represented by corresponding model pa-
thereby increased knowledge of the system that the data repameters
resent. Conversely, increasing the tolerance or the expletive (i) Mischaracterization of the system by the measurement
frequency reduces information by admitting different statesapparatus ( . . x,X).
to be equivalent or to be omitted, respectively, thereby reduc- (ii) Degradation of data prior to the analysis by processing
ing knowledge of the system. Consequently, we might antici{s).
pate that the best model of the system is the model corre- (iii) Insufficient data to resolve all structure preselj,(
sponding to the region of the multidimensional parameteiand
space in which information is maximized. Whilst such a (iv) insufficient computing power to resolve hidden struc-
model is the most accurate description of the data sequendere (n,7).
with the greatest information content, it is not necessarily the The apparatus may easily mischaracterize the system, ei-
optimal model of the system. This is because any data seher by introducing structure to the data which is foreign to
guence is not a complete representation of the system it ihe system’s behavior, or by neglecting to transcribe structure
measured from. In particular, it is limited in two important that should be present. This situation is most apparent when
respects: First, there is structure in a data sequence, that wige apparatus is clearly only taking measurements from a
have termed noise, that cannot be resolved under any amouerioss section of the system. Nevertheless, if it is reasonable
of computation. This will create differences in the profiles ofto assume in a particular case that the apparatus is capable of
words that are statistically insignificant and should be ig-providing a good representation, then identified structure can
nored by allowing some nonzero value of tolerance, corrupbe attributed to the system. In such cases we would also
tion frequency or expletive frequency. Second, there is strucexpect the statistical complexity to scale with the system'’s
ture in a data sequence, that we have termed hidden, that haee complexity. Naturally, this is not valid when the cross-
not been resolved at a certain level of memory or wordsection happens to be an exact subsystem.
length but that is resolvable at a greater word length. In other Although all processing degrades data, it may still be pos-
words, meaningful models of the data can only be foundsible to correctly characterize all the structure present. This is
within certain, usually finite, zones of the parameter spacéecause the degradation will usually produce noise, which
[25]. Within each zoneC , is constant and the model is both can be ignored. A graver problem is whé&mcharacteriz-
stable and minimal. Outside this zone, the model is either toable noise represents some of the system’s structure. The
degenerate or overly complicated. For example, it will beonly solution may be to collect more data, but other prelimi-
degeneratéandC 4 will be too low) if 7 is set too large. This nary approaches are to use a finer scale when coarse graining
is because equivalence classes will collapse into one anothemd/or to digitize more finely. However, it is always neces-
Similarly, the model will be unnecessarily complicateshd  sary to choose sensible margins for the parameter search be-
C, will be too high if 7 is set too small. This is because cause some regions of the parameter space are computation-
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ally very costly to explore. For example, a trinary sequencasm has to be used when applied to noninfinite sequences.
is about seven hundred times as hard to fully analyze at @ahe main conclusion is that models constructed by compu-
word length of eight than a binary sequence. You must havéational mechanics are good if, and only if, they are stable to
a good reason not to use binary. the variation of the parameters used to construct them from
An alternative approach may be useful when the datahe data. In addition, two quite general definitions are made.
have resolvable structure at two widely separated scales; Tthese concern the general constructibility of models from a
may be more computationally efficient to construct higher-set of observations:
level equivalence classes than to persist with using longer (i) Structure which cannot be resolved from a set of data
and longer words. Classes on the next highest level are founghder any amount of computation is most usefully called
by applying the same analysis method to the sequence eroise
pressed in terms of a set of primary level causal states for (ii) Structure which has not been resolved at a certain
which C4 has not yet converged. All information between level of computation or memory, but which is resolvable
the scales;s andn,s is lost in this process. Even so, it is a from the set of data is usefully calldddden
more preferable approach than simply further coarse graining The prior undecidability of whether unresolved structure
the data to intervals afi;s if one has reason to believe that is noise or hidden is a direct parallelism of @&'s famous
the system’s degrees of freedom at the two scales ardaeorem. For a proof relating the two fields, but in a slightly
coupled. The total statistical complexity is the sum of thosedifferent context, see G.J. Chaitia7].
calculated at each level, so it is in fact possible to test for The method developed in this paper was applied to mag-
such coupling by comparing the coarse-graizdwith the ~ netometer measurements of ionospheric currents for the
hierarchical value. years 1995, 1998, and 2000. The technique successfully con-
There is actually no reason why the prowords and epistructed models, the simplest of which comprised a diurnal
words should not come from different sequences, enablingomponent and a Poisson-switched process with a timescale
the direct causal correlation of two systems, such as the solaf abou 5 h that likely relates to the occurrence of magnetic

wind and the magnetosphere. substorms. The most complicated model could be used to
forecast space weather.
VI. CONCLUSION A similar method was also proposed to characterize the

_ o S causal relationship of any two systems, such as the solar
Computational mechanics is an intuitive and powerfulyind and the magnetosphere.

way to study complicated nonlinear sequences derived from
physical systems. This is because the analysis identifies
causal structure from data presented to it and constructs the
minimal adequate model that fits these data. The information We are grateful to Tom March and Sandra Chapman for a
about this structure, and in particular its scales, can then beery thorough reading of the manuscript resulting in several
used to optimize more physically plausible models. In thisvaluable suggestions for improvement, to Cosma Shalizi for
paper, we have discussed in detail how the original formalhelpful discussions.
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